
Journal of Sound and Vibration (1997) 200(4), 540–542

COMMENTS ON ‘‘NATURAL FREQUENCIES OF RECTANGULAR PLATES
USING A SET OF STATIC BEAM FUNCTIONS IN RAYLEIGH–RITZ METHOD’’

P. A. A. L

Institute of Applied Mechanics (CONICET) and Department of Engineering,
Universidad Nacional del Sur, 8000—Bahı́a Blanca, Argentina

(Received 3 April 1996)

The author is to be congratulated for developing co-ordinate functions which are
combinations of sinusoidal terms and polynomials. The coefficients of the polynomial
expressions are determined by the boundary conditions of the plate under analysis.
Excellent accuracy is achieved [1].

It is quite surprising to the writer that the author does not refer at all to an alternative
approach developed extensively by the writer and coworkers, which consists of generating
approximations to the displacement function of the plate using polynomials which satisfy,
at least, the essential boundary conditions.

Admittedly, the analysis has been restricted in many instances to the lower modes of
vibrations, and, in a great majority of the cases, to the fundamental mode of vibration
[2–18]. Among the situations treated, one may mention edges elastically restrained against
rotation and in-plane stresses [3, 4], concentrated and elastically mounted masses [5, 6],
non-uniform thickness [7], orthotropic materials [8], etc.

The approach has been used in the case of forced vibration problems [9, 10] and
extended to circular plates [11, 12] and plates of complicated boundary shape using the
conformal mapping method [13].

Furthermore, polynomial approximations have been employed in the case of plates with
inner supports [14] and the technique has also been used in the case of portal frames [15],
arches [16] and rings [17].

As a matter of fact, it was shown in reference [2] that using a simple one-term polynomial
approximation one obtains l1 =9·00 for the fundamental eigenvalue of a clamped square
plate while the author, using p, q=2, 2 (Table 1 of reference [1]) obtains l1 =9·012, the
‘‘exact’’ result being l1 =8·996 [1]. The methodology has also been applied in the case of
vibrating plates with openings having free edges [18].
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I would like to thank Professor Laura for his calling attention to additional literature [1]
pertinent to the title problem. I am sorry that I did not pay much attention to Professor
Laura’s papers, partly owing to the lack of opportunities to obtain the total literature in
the field when preparing my paper [2]. Besides, readers may find that in most cases, Laura’s
papers were mainly aimed at the calculation of the fundamental mode of vibration of



   542

plates, beams, etc., while my paper focuses on higher modes in addition to the fundamental
modes of vibration of rectangular plates. My method has been extended to vibration of
elastically restrained rectangular plates with eight different rotational and translational
flexural coefficients [3] and line supported rectangular plates in one and two ways [4]. Good
accuracy was also achieved.

In reply to his last comment, the point to note is that l1 =9·012 is actually obtained
by using p, q=1, 1 (Table 1 of reference [2]) in my paper. Apparently the structures are
symmetric about the central axes for the clamped rectangular plates and the basis functions
Yi (z) in my paper are symmetric for i=1, 3, 5, . . . and antisymmetric for i=2, 4, 6, . . . .
In such cases, the accuracy of taking p, q=1, 1 is the same as that of p, q=2, 2 for l1;
the antisymmetric function Y2(z) does not affect the symmetric modes of vibration.
If one wants, one may take advantage of the symmetry about the central axes of the
plates by taking i and j to be 1, 3, 5, . . . for full-symmetric, i, j to be 2, 4, 6, . . . for
full-antisymmetric, i to be 1, 3, 5, . . . and j to be 2, 4, 6, . . . or i to be 2, 4, 6, . . . and j to
be 1, 3, 5, . . . for symmetric–antisymmetric or antisymmetric–symmetric modes of
vibration in the eigenvalue equation of clamped rectangular plates; furthermore, the
computational cost will be reduced.
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